The Implicit Calculus

A New Foundation for Generic Programming

Bruno C.d.S. Oliveira' (presenter), Tom Schrijvers?
Wontae Choi',Wonchan Lee!, KwangkeunYi

'Seoul National University, 2 Universiteit Gent

P W

Wil R::::_:_ SAECCenTer %:lﬂ Programming LLZ"“B.\ﬁ

LA () l l
Research U2 } »Y S E L
UNIVE RSITEIT Research On Software Analysis for Error-free Computing

Laboratory V\/\" |® | Y NATIONAL
GENT http://rosaec.snu.ac.kr http://ropas.snu.ac.kr /GA)XLL\ UNIVERSITY
Friday, June 22, 2012

}

Introduction

® Several generic programming (GP) mechanisms:

® Haskell type classes (several formal models)
® C++0x concept proposals (some formal models)
® Scala implicits (no formal model)

® This work:A formal model for implicits

® Why! Implicits add expressiveness and are at the
same time simpler than other GP mechanisms.

Friday, June 22, 2012

Generic Programming

® Abstracting algorithms from specific types
® Abstraction achieved via parametrization

® |mplicit instantiation of generic parameters

Generic Programming

A generic sorting algorithm on Lists

[Type parameter j

|

sort<A> : Ord<A> = List<A> - List<A>
/\ N

-
Constraint: elements of type A must be

orderable!
_ J

Friday, June 22, 2012

Generic Programming

Using generic sorting:

sort [3,1,2] // [1,2,3]
Sor,.t [‘C’,’G’,,b,] // I:Ca,,,b,,,C,]
sort [[2,3],[1,5]] // L[[1,5]1,[2,3]]

Both the type parameter and the constraint
are implicitly instantiated (or inferred).

Goal

® A model of GP mechanisms (inspired by
Scala implicits)

® Minimal formal calculus (language agnostic)

® Useful for language designers wanting to
implement implicits in their own language

The Implicit Calculus

The Implicit Calculus

e Models 2 fundamental mechanisms:

|. (type-directed) resolution of rules

2. scoping of (implicit) rules {\ constraints)

* |Implicit instantiation recovered in source languages

* Concepts and type-classes tangle resolution and
implicit instantiation

Friday, June 22, 2012

| : Resolution

Inspired by Logic Programming:
* Queries for values of a certain type
* Jype-directed rules to derive facts (values)

e Rule environment to collect rules

Friday, June 22, 2012

| : Resolution

A simpler generic sort first:

sort<A> : Ord<A> » List<A> » List<A>

1nterface Ord<A> {
(==) : A > A > Bool
(<) : A > A - Bool

Friday, June 22, 2012

| : Resolution

Resolution Rule environment

(inference of constraints) [<—

2(0rd<Int>) = ordInt ordInt: Ord<Int>

[Query j
V
sort<Int> 7(0Ord<Int>) [3,1,2]

Friday, June 22, 2012

| : Recursive Resolution

Resolution Rule environment
(inference of constraints) “lordInt: Ord<Int>
?(Ord<List<Int>>) = ordList:v A. Ord<A>
. OI"dLiStCOI"dIﬂt) = 0Ord<List<A>>

¢ J
[Query j
vV

sort<List<Int>> 7(Ord<List<Int>>) [[2,3],[1,5]]

Friday, June 22, 2012

2: Scoping

Inspired by conventional A-binders:
® | exical and local scoping
® Rule abstractions define rules

® Rule applications apply rules

2: Scoping

Another version of generic sort:

sort<A> : Ord<A> = List<A> - List<A>

Friday, June 22, 2012

2: Scoping

[Rule (abstraction) j

V
let ordInt = (I ... : Ord<Int> |) 1n

implicit {ordInt} in<(Extending environment j

sort<Int> with {?(Ord<Int>)} [3,1,2]
AN

[Rule application j

Friday, June 22, 2012

The Implicit Calculus

al|Int |1 — 12| p
Va.p = 1
n|lx|Ar:r.e|ees:

ol (e:pl)|elr] | ewitherp

(Sumple) Types T
Rule Types P
Expressions e

Syntactic Sugar:

implicit eTpin e; : 7 E (e; : p= 7|) witheTp

Friday, June 22, 2012

Source Languages

From source:

sort [[2,3],[1,5]1] (A
query (more type-) inference
To core: — y
sort<List<Int>> with {7?(Ord<List<Int>>)} [[2,3],[1,5]]
A
4)

Conventional type-inference
- J

Friday, June 22, 2012

Implicit Instantiation

Implicit instantiation = resolution + (type-)inference

More in the paper

Type System
Elaboration semantics to System F

Type-directed translation from source
language to the Implicit calculus

Higher-order rules and partial resolution

Comparison

® Concepts and Type Classes
® Special interfaces for constraints
® Implicit instantiation only for those interfaces
® |mplicits
® Implicit (and explicit) instantiation for any types

® Constraints are just regular types

® A general mechanism for type-directed implicit
parameter passing

Friday, June 22, 2012

Comparison

The following definitions:

[Constraint used as a type!)

V
sort<A>: Ord<A> - List<A> -» List<A>

log: PrintStream = String -» ()
/\

[Type used as a constraint!)

are valid in a system with implicits, but invalid
with type classes or concepts!

Friday, June 22, 2012

Conclusion

® |mplicit calculus: Simple formal model for
GP

® Decoupling of various mechanisms in
existing GP mechanisms

® Resolution and implicit instantiation for any
types

Friday, June 22, 2012

Thank You!

Questions!

2: Scoping

[Rule (abstraction) j

V
let ordList=(Cl...:v A. Ord<A> = Ord<List<A>>1) 1n

let ordInt=(Cl...:0rd<Int>]) 1n
implicit {ordInt,ordList} 1in
sort<List<Int>> with{?(Ord<List<Int>>)}[[2,3],[1,5]]

Friday, June 22, 2012

Haskell

® [ype classes are predicates on types
® Global Scoping

® Not possible to override compiler choice

System FG

® Concepts are predicates on types
® | ocal Scoping

® Not possible to override compiler choice

Scala

® Type-classes/concepts are types
® | ocal scoping

® Overriding is possible

The Implicit Calculus

Type-classes/concepts are types
Local scoping
Overriding is possible

Higher-order rules

