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A New Foundation for Generic Programming

2. The Implicit Calculus λ⇒
• Calculus of the essence of GP: rules, scoping, and type-directed resolution

In the paper
• Type system
• Elaboration semantics to System F
• Higher-order rules and partial resolution
• Source language and its translation to λ⇒

1. Generic Programming

• Decoupling algorithms from types

sort [3,1,2]        // [1,2,3]
sort [‘c’,’a’,’b’]  // [‘a’,’b’,’c’]
sort [[2,5],[1,3]]  // [[1,3],[2,5]]

• Decoupling by parametrization

• Implicit instantiation

sort<A>: Ord<A> ⇒ List<A> → List<A>

sort< ? >   ?    [3,1,2]

sort<Int>   ?    [3,1,2]

sort<Int> OrdInt [3,1,2]

type inference

elements of type A should have order!

• Well-known GP mechanisms: Haskell Type Classes, C++0x Concepts, Scala Implicits

• Queries and Resolution

!

OrdInt gives order between Ints

resolution

e ::= ?ρ | (|e : ρ|) | e with e : ρ | · · ·
queries rules scoping
?ρ (|e : ρ|)

OrdInt : Ord�Int�OrdInt

OrdList : ∀A.Ord�A�
⇒ Ord�List�A��

OrdList

ρ ::= ∀�α.ρ̄ ⇒ τ

rule environment
! sort�List�Int�� (OrdList OrdInt) [[2, 5], [1, 3]]OrdIntOrdList

• Rules and Scoping

OrdList

OrdInt

?(Ord�List�Int��)

(| · · · : ∀A.Ord�A� ⇒ Ord�List�A��|)
(| · · · : Ord�Int�|)

OrdListOrdIntimplicit in

with

• Translation from Source Langauge

sort�Int� ?(Ord�Int�) [3, 1, 2]?(Ord�Int�)
! sort�Int� OrdInt [3, 1, 2]OrdInt

simple case

sort�List�Int�� ?(Ord�List�Int��) [[2, 5], [1, 3]]?(Ord�List�Int��)
recursive case

sort [[2,5],[1,3]]
source language λ⇒

sort�List�Int�� with {?(Ord�List�Int��)} [[2, 5], [1, 3]]?(Ord�List�Int��)with❀

syntactic sugar
implicit e : ρ in e1 : τ

def
= (|e1 : ρ̄ ⇒ τ |) with e : ρ

implicit in

with

formalized, but restrictive general, but never formalized
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Introduction

• Several generic programming (GP) mechanisms: 

• Haskell type classes (several formal models)
• C++0x concept proposals (some formal models)
• Scala implicits (no formal model)

• This work: A formal model for implicits  

• Why? Implicits add expressiveness and are at the 
same time simpler than other GP mechanisms.
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Generic Programming

• Abstracting algorithms from specific types

• Abstraction achieved via parametrization

• Implicit instantiation of generic parameters
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Generic Programming
A generic sorting algorithm on Lists

sort<A> : Ord<A> ⇒ List<A> ! List<A>

Type parameter

Constraint: elements of type A must be 
orderable!
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Generic Programming
Using generic sorting:

sort [3,1,2]            // [1,2,3]

sort [‘c’,’a’,’b’]      // [‘a’,’b’,’c’]

sort [[2,3],[1,5]]      // [[1,5],[2,3]] 

Both the type parameter and the constraint 
are implicitly instantiated (or inferred).
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Goal

• A model of GP mechanisms (inspired by 
Scala implicits)

• Minimal formal calculus (language agnostic)

• Useful for language designers wanting to 
implement implicits in their own language
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The Implicit Calculus
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The Implicit Calculus
• Models 2 fundamental mechanisms:

1. (type-directed) resolution of rules

2. scoping of (implicit) rules

• Implicit instantiation recovered in source languages

• Concepts and type-classes tangle resolution and 
implicit instantiation

constraints
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1: Resolution

Inspired by Logic Programming:

• Queries for values of a certain type 

• Type-directed rules to derive facts (values)

• Rule environment to collect rules
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1: Resolution

A simpler generic sort first:

sort<A> : Ord<A> ! List<A> ! List<A>

interface Ord<A> {
  (==) : A ! A ! Bool
  (<)  : A ! A ! Bool
} 
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1: Resolution

sort<Int> ?(Ord<Int>) [3,1,2]

Resolution
(inference of constraints)
?(Ord<Int>) ➾ ordInt

Rule environment

ordInt: Ord<Int>

Query
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1: Recursive Resolution
Resolution

(inference of constraints)
?(Ord<List<Int>>) ➾ 

ordList(ordInt)

Query

sort<List<Int>> ?(Ord<List<Int>>) [[2,3],[1,5]]

Rule environment
ordInt: Ord<Int>
ordList:∀ A. Ord<A> 
⇒ Ord<List<A>>
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2: Scoping

Inspired by conventional λ-binders:

• Lexical and local scoping

• Rule abstractions define rules

• Rule applications apply rules
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2: Scoping

Another version of generic sort:

sort<A> : Ord<A> ⇒ List<A> ! List<A> 
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2: Scoping

let ordInt = (| ... : Ord<Int> |) in

implicit {ordInt} in

sort<Int> with {?(Ord<Int>)} [3,1,2]

Rule (abstraction)

Rule application

Extending environment
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The Implicit Calculus

Locally and lexically scoped rules: Rules can be nested and res-
olution respects the lexical scope of rules. Consider the following
program:

implicit {1} in
implicit {True, (| if ?Bool then 2 : {Bool } ⇒ Int |)}
in ?Int

The query ?Int is not resolved with the integer value 1. Instead the
rule that returns an integer from a boolean is applied to the boolean
True , because those two rules can provide an integer value and
they are nearer to the query. So, the program returns 2 and not 1.

Overlapping rules: Two rules overlap if their return types inter-
sect, i.e., when they can both be used to resolve the same query.
Overlapping rules are allowed in λ⇒ through nested scoping. The
nearest matching rule takes priority over other matching rules. For
example consider the following program:

implicit {λx .x : ∀α.α → α} in
implicit {λn.n + 1 : Int → Int } in
?(Int → Int) 1

In this case λn.n + 1 : Int → Int is the lexically nearest match in
the implicit environment and evaluating this program results in 2.
However, if we have the following program instead:

implicit {λn.n + 1 : Int → Int } in
implicit {λx .x : ∀α.α → α} in
?(Int → Int) 1

Then the lexically nearest match is λx .x :∀α.α → α and evaluating
this program results in 1.

3. The λ⇒ Calculus
This section formalizes the syntax and type system of λ⇒.

3.1 Syntax
This is the syntax of the calculus:

(Simple) Types τ ::= α | Int | τ1 → τ2 | ρ
Rule Types ρ ::= ∀%α.ρ̄ ⇒ τ
Expressions e ::= n | x | λx : τ.e | e1 e2

| ?ρ | (|e : ρ|) | e[%τ ] | e with e : ρ

Types τ are either type variables α, the integer type Int , function
types τ1 → τ2 or rule types ρ. A rule type ρ = ∀%α.ρ̄ ⇒ τ
is a type scheme with universally quantified variables %α and an
(implicit) context ρ̄. This context summarizes the assumed implicit
environment. Note that we use %o to denote an ordered sequence
o1, . . . , on of entities and ō to denote a set {o1, . . . , on}. Such
ordered sequences and sets can be empty, and we often omit empty
universal quantifiers and empty contexts from a rule type. The base
case of rule types is when ρ̄ is the empty set (that is ∀%α.{} ⇒ τ or,
more compactly, ∀%α.τ ).

Expressions include integer constants n and the three basic
typed λ-calculus expressions (variables, lambda binders and appli-
cations). A query ?ρ queries the implicit environment for a value of
type ρ. A rule abstraction (|e : ∀%α.ρ̄ ⇒ τ |) builds a rule whose
type is ∀%α.ρ̄ ⇒ τ and whose body is e.

Without loss of generality we assume that all variables x and
type variables α in binders are distinct. If not, they can be easily
renamed apart to be so.

Note that, unlike System F, our calculus does not have a separate
Λ binder for type variables. Instead rule abstractions play a dual
role in the binding structure: 1) the universal quantification of type
variables (which binds types), and 2) the context (which binds a
rule set). Therefore, a Λ binder can be encoded using a rule with an
empty context:

Λ%α.(e : τ)
def
= (|e : ∀%α.τ |)

The design choice of making rules double binders is due to
our interpretation of rules as logic programming rules3. After all,
in the matching process of resolution, a rule is applied as a unit.
Hence, separating rules into more primitive binders (à la System
F’s type and value binders) would only complicate the definition of
resolution unnecessarily. However, elimination can be modularized
into two constructs: type application e[τ̄ ] and rule application
e with e : ρ.

Using rule abstractions and applications we can build the
implicit sugar that we have used in Sections 1 and 2.

implicit e : ρ in e1 : τ
def
= (|e1 : ρ ⇒ τ |) with e : ρ

For readability purposes, when we use implicit we omit the
type annotation τ . As we shall see in Section 5 this annotation can
be automatically inferred.

For brevity and simplicity reasons, we have kept λ⇒ small. In
examples we may use additional syntax such as built-in integer
operators and boolean literals and types.

3.2 Type System
Figure 1 presents the static type system of λ⇒. The typing judg-
ment Γ | ∆ $ e : τ means that expression e has type τ under type
environment Γ and implicit environment ∆. The auxiliary resolu-
tion judgment ∆ $r ρ expresses that type ρ is resolvable with
respect to ∆. Here, Γ is the conventional type environment that
captures type variables; ∆ is the implicit environment, defined as
a stack of contexts. Figure 1 also presents lookup in the implicit
environment (∆〈τ〉) and in contexts (ρ̄〈τ〉).

We will not discuss the first four rules ((TyInt), (TyVar),
(TyAbs) and (TyApp)) because they are entirely standard. For now
we also ignore the gray-shaded conditions in the other rules; they
are explained in Section 3.3.

Rule (TyRule) checks a rule abstraction (|e : ∀%α.ρ̄ ⇒ τ |) by
checking whether the rule’s body e actually has the type τ under the
assumed implicit type context ρ̄. Rule (TyInst) instantiates a rule
type’s type variables %α with the given types %τ , and rule (TyRApp)
instantiates the type context ρ̄ with expressions of the required rule
types e : ρ. Finally, rule (TyQuery) delegates queries directly to the
resolution rule (TyRes).

Resolution Principle The underlying principle of resolution in
λ⇒ originates from resolution in logic. Following the Curry-
Howard correspondence, we assign to each type a corresponding
logical interpretation with the (·)† function:

Definition 3.1 (Logical Interpretation).

α† = α†

Int† = Int†

(τ1 → τ2)
† = τ†

1 →† τ†
2

(∀%α.ρ̄ ⇒ τ)† = ∀%α†.
∧

ρ∈ρ̄

ρ† ⇒ τ†

Here, type variables α map to propositional variables α† and the
primitive type Int maps to the propositional constant Int†. Unlike
Curry-Howard, we do not map function types to logical implica-
tions; we deliberately restrict our implicational reasoning to rule
types. So, instead we also map the function arrow to an uninter-
preted higher-order predicate →†. Finally, as already indicated, we
map rule types to logical implications.

3 In Prolog these are not separated either.

Locally and lexically scoped rules: Rules can be nested and res-
olution respects the lexical scope of rules. Consider the following
program:

implicit {1} in
implicit {True, (| if ?Bool then 2 : {Bool } ⇒ Int |)}
in ?Int

The query ?Int is not resolved with the integer value 1. Instead the
rule that returns an integer from a boolean is applied to the boolean
True , because those two rules can provide an integer value and
they are nearer to the query. So, the program returns 2 and not 1.

Overlapping rules: Two rules overlap if their return types inter-
sect, i.e., when they can both be used to resolve the same query.
Overlapping rules are allowed in λ⇒ through nested scoping. The
nearest matching rule takes priority over other matching rules. For
example consider the following program:

implicit {λx .x : ∀α.α → α} in
implicit {λn.n + 1 : Int → Int } in
?(Int → Int) 1

In this case λn.n + 1 : Int → Int is the lexically nearest match in
the implicit environment and evaluating this program results in 2.
However, if we have the following program instead:

implicit {λn.n + 1 : Int → Int } in
implicit {λx .x : ∀α.α → α} in
?(Int → Int) 1

Then the lexically nearest match is λx .x :∀α.α → α and evaluating
this program results in 1.

3. The λ⇒ Calculus
This section formalizes the syntax and type system of λ⇒.

3.1 Syntax
This is the syntax of the calculus:

(Simple) Types τ ::= α | Int | τ1 → τ2 | ρ
Rule Types ρ ::= ∀%α.ρ̄ ⇒ τ
Expressions e ::= n | x | λx : τ.e | e1 e2

| ?ρ | (|e : ρ|) | e[%τ ] | e with e : ρ

Types τ are either type variables α, the integer type Int , function
types τ1 → τ2 or rule types ρ. A rule type ρ = ∀%α.ρ̄ ⇒ τ
is a type scheme with universally quantified variables %α and an
(implicit) context ρ̄. This context summarizes the assumed implicit
environment. Note that we use %o to denote an ordered sequence
o1, . . . , on of entities and ō to denote a set {o1, . . . , on}. Such
ordered sequences and sets can be empty, and we often omit empty
universal quantifiers and empty contexts from a rule type. The base
case of rule types is when ρ̄ is the empty set (that is ∀%α.{} ⇒ τ or,
more compactly, ∀%α.τ ).

Expressions include integer constants n and the three basic
typed λ-calculus expressions (variables, lambda binders and appli-
cations). A query ?ρ queries the implicit environment for a value of
type ρ. A rule abstraction (|e : ∀%α.ρ̄ ⇒ τ |) builds a rule whose
type is ∀%α.ρ̄ ⇒ τ and whose body is e.

Without loss of generality we assume that all variables x and
type variables α in binders are distinct. If not, they can be easily
renamed apart to be so.

Note that, unlike System F, our calculus does not have a separate
Λ binder for type variables. Instead rule abstractions play a dual
role in the binding structure: 1) the universal quantification of type
variables (which binds types), and 2) the context (which binds a
rule set). Therefore, a Λ binder can be encoded using a rule with an
empty context:

Λ%α.(e : τ)
def
= (|e : ∀%α.τ |)

The design choice of making rules double binders is due to
our interpretation of rules as logic programming rules3. After all,
in the matching process of resolution, a rule is applied as a unit.
Hence, separating rules into more primitive binders (à la System
F’s type and value binders) would only complicate the definition of
resolution unnecessarily. However, elimination can be modularized
into two constructs: type application e[τ̄ ] and rule application
e with e : ρ.

Using rule abstractions and applications we can build the
implicit sugar that we have used in Sections 1 and 2.

implicit e : ρ in e1 : τ
def
= (|e1 : ρ ⇒ τ |) with e : ρ

For readability purposes, when we use implicit we omit the
type annotation τ . As we shall see in Section 5 this annotation can
be automatically inferred.

For brevity and simplicity reasons, we have kept λ⇒ small. In
examples we may use additional syntax such as built-in integer
operators and boolean literals and types.

3.2 Type System
Figure 1 presents the static type system of λ⇒. The typing judg-
ment Γ | ∆ $ e : τ means that expression e has type τ under type
environment Γ and implicit environment ∆. The auxiliary resolu-
tion judgment ∆ $r ρ expresses that type ρ is resolvable with
respect to ∆. Here, Γ is the conventional type environment that
captures type variables; ∆ is the implicit environment, defined as
a stack of contexts. Figure 1 also presents lookup in the implicit
environment (∆〈τ〉) and in contexts (ρ̄〈τ〉).

We will not discuss the first four rules ((TyInt), (TyVar),
(TyAbs) and (TyApp)) because they are entirely standard. For now
we also ignore the gray-shaded conditions in the other rules; they
are explained in Section 3.3.

Rule (TyRule) checks a rule abstraction (|e : ∀%α.ρ̄ ⇒ τ |) by
checking whether the rule’s body e actually has the type τ under the
assumed implicit type context ρ̄. Rule (TyInst) instantiates a rule
type’s type variables %α with the given types %τ , and rule (TyRApp)
instantiates the type context ρ̄ with expressions of the required rule
types e : ρ. Finally, rule (TyQuery) delegates queries directly to the
resolution rule (TyRes).

Resolution Principle The underlying principle of resolution in
λ⇒ originates from resolution in logic. Following the Curry-
Howard correspondence, we assign to each type a corresponding
logical interpretation with the (·)† function:

Definition 3.1 (Logical Interpretation).

α† = α†

Int† = Int†

(τ1 → τ2)
† = τ†

1 →† τ†
2

(∀%α.ρ̄ ⇒ τ)† = ∀%α†.
∧

ρ∈ρ̄

ρ† ⇒ τ†

Here, type variables α map to propositional variables α† and the
primitive type Int maps to the propositional constant Int†. Unlike
Curry-Howard, we do not map function types to logical implica-
tions; we deliberately restrict our implicational reasoning to rule
types. So, instead we also map the function arrow to an uninter-
preted higher-order predicate →†. Finally, as already indicated, we
map rule types to logical implications.

3 In Prolog these are not separated either.

Syntactic Sugar:
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Source Languages
From source:

sort [[2,3],[1,5]]

To core:

sort<List<Int>> with {?(Ord<List<Int>>)} [[2,3],[1,5]]

Conventional type-inference

query (more type-) inference
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Implicit Instantiation

Implicit instantiation = resolution + (type-)inference
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More in the paper

• Type System

• Elaboration semantics to System F

• Type-directed translation from source 
language to the Implicit calculus

• Higher-order rules and partial resolution
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Comparison

• Concepts and Type Classes

• Special interfaces for constraints

• Implicit instantiation only for those interfaces

• Implicits

• Implicit (and explicit) instantiation for any types

• Constraints are just regular types

• A general mechanism for type-directed implicit 
parameter passing

Friday, June 22, 2012



Comparison
The following definitions:

are valid in a system with implicits, but invalid 
with type classes or concepts!

sort<A>: Ord<A> ! List<A> ! List<A>

log: PrintStream ⇒ String ! ()

Constraint used as a type!

Type used as a constraint!
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Conclusion

• Implicit calculus: Simple formal model for 
GP

• Decoupling of various mechanisms in 
existing GP mechanisms

• Resolution and implicit instantiation for any 
types
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Thank You!

Questions?

Friday, June 22, 2012



2: Scoping

let ordList=(|...:∀ A. Ord<A> ⇒ Ord<List<A>>|) in

let ordInt=(|...:Ord<Int>|) in

implicit {ordInt,ordList} in

sort<List<Int>> with{?(Ord<List<Int>>)}[[2,3],[1,5]]

Rule (abstraction)

Friday, June 22, 2012



Haskell

• Type classes are predicates on types

• Global Scoping

• Not possible to override compiler choice
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System FG

• Concepts are predicates on types

• Local Scoping

• Not possible to override compiler choice
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Scala

• Type-classes/concepts are types

• Local scoping

• Overriding is possible
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The Implicit Calculus

• Type-classes/concepts are types

• Local scoping

• Overriding is possible

• Higher-order rules
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