
Parallelism From The Middle Out

Doug Lea
SUNY Oswego

The Middle Path to Parallel Programming

Bottom up: Make computers faster via parallelism

Instruction-level, multicore, GPU, hw-transactions, etc

Initially rely on non-portable techniques to program

Top down: Establish a model of parallel execution

Create syntax, compilation techniques, etc

Many models are available!

Middle out: Encapsulate most of the work needed to
solve particular parallel programming problems

Create reusable APIs (classes, modules, frameworks)

Have both hardware-based and language-based dependencies

Abstraction á la carte

The customer is always right?

Vastly more usage of parallel library components
than of languages primarily targeting parallelism

Java, MPI, pthreads, Scala, C#, Hadoop, etc libraries

Probably not solely due to inertia

Using languages seems simpler than using libraries

But sometimes is not, for some audiences

In part because language/library borderlines are
increasingly fuzzy

Distinctions of categories of support across …

Parallel (high throughput)

Concurrent (low latency)

Distributed (fault tolerance)

 … also becoming fuzzier, with many in-betweens.

Theme: Abstractions vs Policies

Hardware parallelism is highly opportunistic

Directly programming not usually productive

Effective parallel programming is too diverse to be
constrained by language-based policies

e.g., CSP, transactionality, side-effect-freedom, isolation,
sequential consistency, determinism, …

But they may be helpful constraints in some programs

Engineering tradeoffs lead to medium-grained
abstractions

Still rising from the Stone Age of parallel programming

Need diverse language support for expressing and
composing them

Old news (Fortress, Scala, etc) but still many open issues

Hardware Trends

ALU(s)

insn
sched store

buf

ALU(s)

insn
sched store

buf

Cache(s)

Memory

Socket 1

ALU(s)

insn
sched store

buf

ALU(s)

insn
sched store

buf

Cache(s)

Socket 2

Other devices / hosts

Opportunistically parallelize anything and everything

More gates → More parallel computation

Dedicated functional units, multicores

More communication → More asynchrony

Async (out-of-order) instructions, memory, & IO

One view of a
common server

Parallelism in Components

Over forty years of parallelism and asynchrony
inside commodity platform software components

Operating Systems, Middleware, VMs, Runtimes

Overlapped IO, device control, interrupts, schedulers

Event/GUI handlers, network/distributed messaging

Concurrent garbage collection and VM services

Numerics, Graphics, Media

Custom hw-supported libraries for HPC etc

Result in better throughput and/or latency

But point-wise, quirky; no grand plan

Complex performance models. Sometimes very complex

Can no longer hide techniques behind opaque walls

Everyday programs now use the same ideas

Processes, Actors, Messages, Events

Deceptively simple-looking

Many choices for semantics and policies

Allow both actors and passive objects?

Single- vs multi- threaded vs transactional actors?

One actor (aka, the event loop) vs many?

Isolated vs shared memory? In-between scopes?

Explicitly remote vs local actors?

Distinguish channels from mailboxes?

Message formats? Content restrictions? Marshalling rules?

Synchronous vs asynchronous messaging?

Point-to-point messaging vs multicast events?

Consensus policies for multicast events?

Exception, Timeout, and Fault protocols and recovery?

P

Q
message

R

Process Abstractions

Top-down: create model+language (ex: CSP+Occam)
supporting a small set of semantics and policies

Good for program analysis, uniformity of use, nice syntax

Not so good for solving some engineering problems

Middle-Out: supply policy-neutral components

Start with the Universal Turing Machine vs TM ploy

Tasks – executable objects

Executors – run (multiplex/schedule) tasks on cores etc

Specializations/implementations may have little in common

Add synchronizers to support messaging & coordination

Many forms of atomics, queues, locks, barriers, etc

Layered frameworks, DSLs, tools can support sweet-spots

e.g., Web service frameworks, Scala/akka actors

Other choices can remain available (or not) from higher layers

Library APIs are platform features with:

Restricted functionality

Must be expressible in base language (or via cheats)

Tension between efficiency and portability

Restricted scopes of use

Tension between Over- vs Under- abstraction

Usually leads to support for many styles of use

Rarely leads to sets of completely orthogonal constructs

Over time, tends to identify useful (big & small) abstractions

Restricted forms of use

Must be composable using other language mechanisms

Restricted usage syntax (less so in Fortress, Scala, ...)

Tensions: economy of expression, readability, functionality

Libraries Focus on Tradeoffs

Composition

Components require language composition support

APIs often reflect how they are meant to be composed

To a first approximation, just mix existing ideas:

Resource-based composition using OO or ADT mechanics

e.g., create and use a shared registry, execution framework, ...

Process composition using Actor, CSP, etc mechanics

e.g., messages/events among producers and consumers

Data-parallel composition using FP mechanics

e.g., bulk operations on aggregates: map, reduce, filter, ...

The first approximation doesn't survive long

Supporting multiple algorithms, semantics, and policies
forces interactions

Requires integrated support across approaches

Data-Parallel Composition

Tiny map-reduce example: sum of squares on array

Familiar sequential code/compilation/execution
 s = 0; for (i=0; i<n; ++i) s += sqr(a[i]); return s;

... or ...
 reduce(map(a, sqr), plus, 0);

May be superscalar even without explicit parallelism

Parallel needs algorithm/policy selection, including:

Split work: Static? Dynamic? Affine? Race-checked?

Granularity: #cores vs task overhead vs memory/locality

Reduction: Tree joins? Async completions?

Substrate: Multicore? GPU? FPGA? Cluster?

Results in families of code skeletons

Some of them are even faster than sequential

Bulk Operations and Amdahl's Law

sumsq

s = result

Set-up

Tear-down

square

accumulate

Sequential set-up/tear-down limits speedup

Or as lost parallelism = (cost of seq steps) * #cores

Can easily outweigh benefits

Can parallelize some of these

Recursive forks

Async Completions

Adaptive granularity

Best techniques take non-obvious forms

Some rely on nature of map & reduce functions

Cheapen or eliminate others

Static optimization

Jamming/fusing across operations; locality enhancements

Share (concurrent) collections to avoid copy / merge

 class SumSqTask extends RecursiveAction {
 final long[] a; final int l, h; long sum;
 SumSqTask(long[] array, int lo, int hi) {
 a = array; l = lo; h = hi;
 }
 // (One basic form; many improvements possible)
 protected void compute() {
 if (h - l < THRESHOLD) {
 for (int i = l; i < h; ++i)
 sum += a[i] * a[i];
 }
 else {
 int m = (l + h) >>> 1;
 SumSqTask rt = new SumSqTask(a, m, h);
 rt.fork(); // pushes task
 SumSqTask lt = new SumSqTask(a, l, m);
 lt.compute();
 rt.join(); // pops/runs or helps or waits
 sum = lt.sum + rt.sum;
 }
 }
}
Tediously similar code for many other bulk operations

Popping

Stealing

TopBase

Deque

Pushing

Sample ForkJoin Sum Task

Composition Using Injection

Simplify data-parallelism by allowing injection of
code snippets into holes in skeletons

Subject to further transformation/optimizations

Some users need to program the skeletons

Some only need to occasionally fine-tune them

Most users usually just want to supply the snippets

Need to represent and manipulate code snippets

Closure-objects, lambdas, macros, templates, etc

Each choice has good and bad points

e.g., megamorphic dispatch vs code bloat

Easy to confuse the means and ends (lambda != FP)

Or push up one level and use generative IDE-based tools or
layered languages

A long heritage for GUI, web page, etc composition of snippets

Top-down: Create a transactional (sub)language to
support multi-operation, multi-object atomicity

Automate contention, space mgt, side-effect rollback, etc

So far, at best, highly variable performance

Library-based: Provide Collections supporting finite
sets of possibly-compound atomic operations

Example: ConcurrentHashMap.putIfAbsent

Key-value maps often the focus of transactions; cf SQL

Can be implemented efficiently

Improve atomic APIs based on experience

e.g., adding computeIfAbsent, recompute

Usually can only do so for implementations, not interfaces

Multi-object atomicity guarantees are missing or limited

Best bet: Support under composition constraints

Composition on Shared Resources

Implementing Shared Data Structures

Mostly-Write

Most producer-
consumer exchanges

Apply combinations of a
small set of ideas:

Use non-blocking sync via
compareAndSet (CAS)

Or hardware TM if available

Relax internal consistency
requirements & invariants

Reduce point-wise
contention

Arrange that threads help
each other make progress

Mostly-Read

Most Maps & Sets

Structure to maximize
concurrent readability

Without locking, readers
see legal (ideally,
linearizable) values

Often, using immutable
copy-on-write internals

Apply write-contention
techniques from there

Consistency policies are intrinsic to systems with
multiple readers or multicast (so: part of API design)

Most consistency properties do not compose

IRIW Example: vars x,y initially 0 → events x, y unseen

Activity A: send x = 1; // (multicast send)

Activity B: send y = 1;
Activity C: receive x; receive y; // see x=1, y=0

Activity D: receive y; receive x; // see y=1, x=0 ? Not if SC

For vars, can guarantee sequential consistency

JMM: declare x, y as volatile

Doesn't necessarily extend to component operations

e.g., if x, y are two maps, & the r/w operations are put/get(k)

Doesn't extend at all under failures

Even for fault-tolerant systems (CAP theorem)

Composition and Consistency

Documenting Consistency Properties

Example: ForkJoinTask.fork API spec

“Arranges to asynchronously execute this task. While it is not necessarily
enforced, it is a usage error to fork a task more than once unless it has
completed and been reinitialized. Subsequent modifications to the state of this
task or any data it operates on are not necessarily consistently observable by
any thread other than the one executing it unless preceded by a call to join()
or related methods, or a call to isDone() returning true.”

The no-refork rule ultimately reflects internal relaxed
consistency mechanics based on ownership transfer

The mechanics leverage fact that refork before completion
doesn't make sense anyway

The inconsistent-until-join rule reflects arbitrary state of,
e.g., the elements of an array while it is being sorted

Also enables weaker ordering (more parallelism) while running

Would be nicer to statically enforce

Secretly, the no-refork rule cannot now be dynamically enforced

Determinism á la carte

Common components entail algorithmic randomness

Hashing, skip lists, crypto, numerics, etc

Fun fact: The Mark I (1949) had hw random number generator

Visible effects; e.g., on collection traversal order

API specs do not promise deterministic traversal order

Bugs when users don't accommodate

Randomness more widespread in concurrent components

Adaptive contention reduction, work-stealing, etc

Plus non-determinism from multiple threads

Visible effects interact with consistency policies

Main problem across all cases is bug reproducibility

A design tradeoff across languages, libraries, and tools

Non-deterministic performance bugs exist independently

Usability of Abstractions

Users like and use some API styles more than others

Futures: r = ex.submit(func); … ; use(r.get());

Idea: parallel variant of lazy evaluation

Nicely extend to recursive parallelism (j.u.c ForkJoinTasks)

Intuitive/pleasant even if need explicit syntax to get result

But can be a resource management problem when recursively
blocked on indivisible leaf actions (like IO)

Chains of blocked threads; requires internal mgt heuristics

Completions: t2 = new CC(1, t1); … t2.fork(); ...

Idea: arrange to trigger an action when other(s) complete

Atomic triggers for continuations avoid cascaded blocking

Often less intuitive/pleasant even with syntax support

Non-block-structured cases especially messy

Current j.u.c solution: Support with ugly API

Practical Pitfalls of Layering

Minimal support for building libraries...

load/store ordering, atomics, start/block/unblock threads, ...

... doesn't always mean easy or pleasant support:

Coping with Idiot Savant dynamic compilation/optimization

Manual dataflow optimization

Using intrinsics (pseudo-bytecodes)

Interactions with VM bookkeeping and services

Coping with code between the lines (e.g., safepoints)

Coping with GC anomalies (e.g., floating garbage)

Indirectly influencing memory locality, memory contention

Coping with processor, VM, OS, Hypervisor quirks/bugs

Avoiding fall-off-cliff costs (e.g., when blocking threads)

And more. For some gory details, see upcoming SPAA talk

Software Process

Incrementalism requires shorter cycles

Releasing a component easier than language or hardware

Users: Trying new library easier than new language

Continuous feedback on functionality, usability

New APIs provide ideas for restructuring programs

Balancing with what users say they want

Some ideas don't make it into release

Also provide new user bug opportunities

Has led to new bug pattern detectors in findBugs

Multiple audiences

Heaviest j.u.c. users use it to build layered frameworks

Users with better ideas can create better components

Summary: Themes revisited

Effective parallel programming is too diverse to be
constrained by language-based policies

But often useful to layer policy over mechanism

For sake of learnability, static analysis, debugging, optimization

Engineering tradeoffs lead to medium-grained
abstractions

Incorporate ideas from many modes/styles

Common language design concerns are among tradeoffs

Orthogonality, generality, specification rigor, usability

May lead to multiple co-existing solutions

Need diverse language support for expressing and
composing them

Too few component developers can now cope

Backup slides

Backup slides follow

Task-Based Parallel Evaluation

Programs can be broken into tasks

Under some appropriate level of granularity

Workers/Cores continually run tasks

Sub-computations are forked as subtask objects

Sometimes need to wait for subtasks

Joining (or Futures) controls dependencies

Worker

task task

Pool

Worker

WorkerWork queue(s)f() = {
 split;
 fork;
 join;
 reduce;
}

Computation Trees and Deques

s(0,n)

s(0,n/2) s(n/2,n)

s(0,n/4) s(n/4,n/2) s(n/2,n/2+n/4) s(n/2+n/4,n)

q[base]

q[base+1]

root

For recursive decomposition, deques arrange tasks
with the most work to be stolen first. (See Blelloch et
al for alternatives)

Example: method s operating on array elems 0 ... n:

Parallel Recursive Decomposition

Typical algorithm

 Result solve(Param problem) {
 if (problem.size <= THRESHOLD)
 return directlySolve(problem);
 else {
 in-parallel {
 Result l = solve(leftHalf(problem));
 Result r = solve(rightHalf(problem));
 }
 return combine(l, r);
 }
 }

To use FJ, must convert method to task object

“in-parallel” can translate to invokeAll(leftTask, rightTask)

The algorithm itself drives the scheduling

Many variants and extensions

Transferring Tasks

Queues perform a form of ownership transfer

Push: make task available for stealing or popping

needs lightweight store-fence

Pop, steal: make task unavailable to others, then run

Needs CAS with at least acquire-mode fence

Java doesn't provide source-level map to efficient
forms

So implementation uses JVM intrinsics

T1: push(w) --
w.state = 17;
slot = q;

T2: steal() --
w = slot;
if (CAS(slot, w, null))
 s = w.state; ...

Task w
Int state;

consumepublish
Require: s == 17

Queue slot

ConcurrentLinkedQueue

Michael & Scott Queue (PODC 1996)

Use retriable CAS (not lock)

CASes on different vars (head, tail) for put vs poll

If CAS of tail from t to x on put fails, others try to help

By checking consistency during put or take

Poll head tail

h n

Put x head tail

t

CAS head
 from h to n;
return h.item

x

1: CAS t.next
from null to x

2: CAS tail
from t to x

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

