
Security-Policy Monitoring
and Enforcement with

JavaMOP

Soha Hussein1 Patrick Meredith2 Grigore Rosu3

2Univ. of Illinois at Urbana-
Champaign, USA.

PLAS’12

1Univ. of Ain Shams,
Egypt.

Saturday, June 30, 2012

Introduction & Motivation
Inlined Security
Enforcement
Mechanisms:

Designed for
enforcing security
properties.

Execution Monitors,
Rewriting Model, Edit
Automata

SASI, Naccio, PoET/
PSLang, Polymer and
SPoX.

Runtime Monitoring and
Verification:

Designed to be Generic.

Used to enforce
functional
correctness of post-
production programs
or debugging and
testing program during
the production phase.

MOP, JPaX, MaC, J-LO,
Tracematches, etc.

VS.

Saturday, June 30, 2012

Motivation

Use RV-based system (JavaMOP) to specify
and enforce security policies.

Provide a means to support composition and
conflicts among policies.

Measure performance between JavaMOP and
other security-enforcement systems.

Saturday, June 30, 2012

RV System: JavaMOP

Monitoring oriented programming (MOP) is a
formalism-generic runtime verification and
monitoring framework.

JavaMOP is the Java instance for MOP.

Output of JavaMOP is an AspectJ file.

JavaMOP

JavaMOP
Spec Aspect AspectJ

Compiler

Target

Target
Instrumented

with Spec

Saturday, June 30, 2012

MOP General Terms &
Features

Generic
Formalism

Catching
Validation or
Violations

Parametric
properties.

Handler
Validation &Violation

Property:
ERE, CFG, PTLTL

Monitor’s
Environment

Events:
JoinPoint+PointCut

MOP Monitor

Saturday, June 30, 2012

Enforcing Security Policies

Access Control Policies.

Safe Lock. §2.

Disable System Calls. §3.1.

SQL Injection. §3.3.

Separation of Duties. §3.2.

Variations of the Chinese Wall. §3.4.

File Network WAll

Original Chinese Wall

Saturday, June 30, 2012

CHINESE WALL
The policy attempts to keep users in the
system from accessing objects of different
datasets that are in the same Conflict
Class.

In the monitoring world this is translated
To:

we want to check each and every access of
objects in the subject and make sure that
the object being accessed does not lie in
conflict with previously accessed objects,
for each subject instance.

Saturday, June 30, 2012

Chinese Wall in JavaMOP

Subject S
Call Stack

event methodCall before
(Subject S):
call(* Subject.*(..)) && target(S)

event methodReturn after
(Subject S) :
call(* Subject.*(..))&&target(S)

 event access before
(Obj O): call(* Obj.Read

()) && target(O)

What we want is:
1. A parametric
Specification.
2. means to track the call
stack of subjects.
3. carry the necessary
checks when matched.

Saturday, June 30, 2012

Chinese Wall in JavaMOP

Saturday, June 30, 2012

Policy Composition and
Conflict Resolution in JavaMOP

JavaMOP, by default, allows multiple
policies to coexist within a given target
program.

However it makes no guarantees on how
they will operate together if their events
interfere with each other, that is, if they
happen to select some of the same program
points.

Saturday, June 30, 2012

A B

C

Composition and Conflict
Problem

Idea: Allow monitors
to exchange events.

Saturday, June 30, 2012

Policy Composition and
conflict Problem in JavaMOP

The Problem is that every monitor here is
actually firing action without
coordination. What we need is coordination.

Saturday, June 30, 2012

Monitoring of Monitors

Saturday, June 30, 2012

Other Security Concerns §4

Monitor’s Integrity.

Restricting Java Reflection.

AspectJ Correctness.

Saturday, June 30, 2012

Experiments

Three experiments were carried out.

The first is specialized to test the
ChineseWall policy.

The second and the third experiments
use the DaCapo benchmark suite (version
9.12-bach) and several JavaAPI security
policies specified using JavaMOP and
later using other IRM systems.

Saturday, June 30, 2012

Chinese Wall in JavaMOP

4.3. Evaluation and Performance 59

Table 4.5: ChineseWall Results. The table shows test load size (#Subjects,
#Datasets, #Conflict classes), average percent overhead(%Overhead), number of
paired method call and return events monitored (#Method call/return), number
of access events monitored (#Access), total number of monitored events (Total
#events), and number of triggered handlers(#Trigger).

#Subjects #Datasets #Conflict
%Over- #Method

#Access
Total

#Trigger
head call/return #events

100 1000 10 6 2000 1000 3000 51500
200 4000 20 9 8000 4000 12000 406000
300 9000 30 5 18000 9000 27000 1363500
400 16000 40 3 32000 16000 48000 3224000
500 25000 50 6 50000 250000 75000 6287500

Additionally, JavaMOP makes no restrictions about using Java reflection within
a program. There is a reason for this: JavaMOP is designed to be a general RV
system that can be used for many purposes, not necessarily for security. However,
since Java reflection can be used maliciously to circumvent the integrity of JavaMOP
monitors, it is usually advised, as in Polymer or Naccio, that one should write a
specific JavaMOP property that restricts the usage of Java reflection.

4.3 Evaluation and Performance

In this section we investigate the performance of JavaMOP when monitoring security
policies.

Three experiments were carried out. The first experiment is specialized to test
the ChineseWall policy, which is not relevant to any programs in the DaCapo bench-
mark suite. The second and the third experiments use the DaCapo benchmark suite
(version 9.12-bach) [Blackburn 2006] and several JavaAPI security policies specified
using JavaMOP and later using other IRM systems. All experiments were performed
on a machine with 1.00 GB of RAM a Pentium(R) 4 with 3.00GHz processor, run-
ning Ubuntu Linux 9.10.

4.3.1 JavaMOP Chinese Wall Performance

To test the ChineseWall security policy, we have customized a simulation program
for stock work flow, where users (subjects) are allowed to access objects in datasets
that do not lay in the same conflict class of previously accessed objects.

We tested the program at different numbers of loads : running subjects, datasets
and conflict classes. We also tested multiple different call depths (0, 25 and 50) for
the call depth of each subject. Table 4.5 summarizes the results in three groups of
columns. The first group of columns (#Subjects, #Datasets and #Conflict classes)
shows the load size of the test performed. It is worth noting that, for each load,

Saturday, June 30, 2012

JavaMOP Performance on
DaCapo Benchmark

60

Chapter 4. Runtime Verification and Execution Monitors

Disconnection

Table 4.6: DaCapo Results. For each policy, except DisSysCalls, three numbers are

shown: average percent overhead within ± 3%, total number of events monitored,

and number of triggered handlers.
HiddenFileAccess DisableNetwork FileCreation FileNetworkWall DisSysCalls AllPolicies

avrora 3 64 64 1 0 0 2 14 14 0 1388 0 1 0 2 1416 56
batik -1 122 122 1 685 685 -1 0 0 0 1692 685 -1 0 1 2071 1542
eclipse -1 642 642 1 438 438 2 28 28 1 1958 439 1 0 1 3047 1542

fop 1 121 121 0 0 0 0 0 0 1 667 0 1 0 1 548 49
h2 2 15 15 0 0 0 -1 0 0 1 73 0 -1 0 -1 70 9

jython 0 2726 2726 2 0 0 -1 2 2 1 7347 0 -2 0 -1 10049 2720
luindex 1 25 25 0 0 0 1 256 256 0 24534 0 -1 0 -2 16475 176
lusearch -2 1549 1549 0 0 0 0 0 0 0 3807 0 0 0 0 3670 1033

pmd -1 3138 3138 -1 0 0 -1 0 0 -3 6288 0 0 0 -1 7182 2242
sunflow 0 13 13 1 0 0 1 0 0 2 72 0 1 0 0 67 9
tomcat 1 37 37 2 3 3 1 0 0 2 20044 3 1 0 1 14680 39

tradebeans 0 13 13 0 0 0 1 0 0 0 3430 0 0 0 1 3427 9
tradesoap 0 15 15 0 0 0 1 0 0 0 2788 0 0 0 -1 2787 11

xalan -1 23826 23826 0 1 1 -1 0 0 1 47741 1 -2 0 0 51144 17022

a monitor is created for each subject, resulting in at most three hundred monitor

instances (the highest load tested) running simultaneously.

The second group shows the percentage performance overhead between the orig-

inal test program and one instrumented with the ChineseWall policy. As shown in

the table, JavaMOP yields low performance overhead, ∼ 9% at the most, when the

target is running a high load of datasets, despite the fact that the test program does

very little that is not a policy event. This is shown by the last group of columns

which summarizes the number of monitored pairs of method call and return events

(#Method call/return), number of monitored access events (#Access), total number

of monitored events (Total #events), and, finally, the number of times the handler

for the Chinese Wall policy was triggered(#Trigger). The number of access events

multiplied by the number of subjects constitutes the upper bound for number of

times the hander is triggered. This number is significantly lower because JavaMOP

does not create monitor instances for a given Subject until absolutely necessary.

4.3.2 DaCapo Benchmark Performance Results

This section presents two experiments done on DaCapo benchmark suite. We used

the default input for DaCapo, and we used the −converge option to ensure the

validity of our test by running each test multiple times, until the execution time

converges. After convergence, the runtime is stabilized within 3%, thus average

overhead figures in Table 4.6 and Table 4.8 should be interpreted as ±3%.

4.3.2.1 JavaMOP Performance Results on DaCapo Benchmark

We measured the performance of each of the following security specifications sep-

arately on JavaMOP then we measured the performance when all of them are instru-

mented simultaneously; the security policies measured are: RestrictHiddenFileAccess, a

policy that simply restricts access to hidden files; DisableNetwork, which disallows all

Saturday, June 30, 2012

JavaMop Vs. SPoX & Polymer
on DaCapo

62
Chapter 4. Runtime Verification and Execution Monitors

Disconnection

Table 4.8: DaCapo Performance Results. Except for the last policy (which shows

only JavaMOP and SPoX average performance overhead), three average overhead

numbers are shown for JavaMOP, SPoX and Polymer respectively.

DisableSystemCalls FileNetworkWall LimitOpenedFiles NoWriteAfterClose

avrora 1 3 1 3 2 2 2 2 2 2 1
batik -1 0 -1 1 -1 -1 -1 1 0 -1 -1
eclipse -1 1 -8 1 1 -3 0 -5 -1 1 -2

fop 0 16 19 5 17 15 0 16 13 1 16
h2 1 1 - 2 0 - -1 -1 - -1 -1

jython 1 -2 -2 -1 -2 2 0 -2 1 -1 -4
luindex 0 3 -1 0 3 14 0 0 13 1 5
lusearch 0 0 0 0 1 2 -1 1 0 1 1

pmd -2 -2 10 -2 -2 128 -2 -2 39 -1 -2
sunflow 1 0 0 0 0 1 1 0 -1 1 0
tomcat 2 0 7 1 0 126 1 -1 44 2 -1

tradebeans 1 1 2 1 0 1 1 0 1 1 1
tradesoap 0 -1 1 0 1 9 0 1 3 -1 0

xalan -1 -1 4 -1 -3 63 1 -3 22 -1 -2

and Polymer.

Three policies were used for the performance measurements, these policies

are: Disable System Calls (where the target is not allowed to do a system

call), File Network Wall (where the target is allowed to either access the

file resources or the network resources but not both) and Limit Opened Files (

where the target is bounded to a number of files that can be opened simultaneously).

Table 4.7 shows the number of events monitored for each specification inside

the DaCapo benchmark, and Table 4.8 shows for each policy, three figures for

the average percentage overhead (± 3%) resulted from using JavaMOP, SPoX

and Polymer respectively. Negative overheads are occasionally possible because

additional code introduced by the weaving process changes the program structure

in DaCapo, sometimes causing the benchmark to run slightly faster due to better

instruction cache layout.

Again, JavaMOP shows no significant performance overhead when any of the

above specifications are enforced on DaCapo. We attribute this result to the fact

that JavaMOP had undergone extensive performance enhancement [Meredith 2011]

to allow multiple monitors to coexist right at the same time.

SPoX on the other hand shows also no significant measurements for almost

all DaCapo programs, except for fop (which takes an XSL-FO file, parses it and

formats it, generating a PDF file). We believe that the fop makes extensive usage

of the file API methods that the policies used in the performance measurement, are

monitoring. Thus when the load of usage of the APIs used in SPoX specifications,

which in turn increases the crosscutting points and requires more weaving to be

done, SPoX shows � 16% average overhead.

Saturday, June 30, 2012

wrap-up
IRM can be considered as a specific instance of RV.
Specifically, we demonstrated how JavaMOP, an RV
system, is able to effectively and efficiently specify
and monitor security policies.

We showed how JavaMOP can be used to resolve
potential conflicts or composition among monitors.

Our experiments which showed that JavaMOP yields
a better performance results when compared to
SPoX and Polymer.

A formal framework for the composition of JavaMOP
specifications is a direction for future research.

Saturday, June 30, 2012

Security-Policy Monitoring
and Enforcement with

JavaMOP

Soha Hussein1 Patrick Meredith2 Grigore Rosu3

2Univ. of Illinois at Urbana-
Champaign, USA.

PLAS’12

1Univ. of Ain Shams,
Egypt.

Saturday, June 30, 2012

